公司简介 公司荣誉 公司文化
新闻动态 网站公告
产品展示 产品分类 产品报价
产品展示 成功案例 资料下载
品质方针 品质控制
电话:010-81469355
新闻动态
激光技术1
    

激光技术

激光特点

一、定向发光:激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。如果用的是探照灯,则绝大部分光早就在中途“开小差”了。

二、亮度极高:由于激光的发散角比普通光源小几百万倍,故亮度就高了几百万倍。

三、单色性好:而激光是一种单色光,频率范围极窄,发散角很小,只有几毫弧,激光束几乎就是一条直线。氦氖激光的谱线宽度,只有10-8nm,颜色非常纯。这种光波在光纤中传输产生的噪声很小,这就可以增加中继距离,扩大通信容量。现在已研究出单频激光器,这种激光器只有一个振荡频率。

四、相干性高:激光与普通光相比则大不相同。因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,送入光纤,这就叫相干性高。一台巨脉冲红宝石激光器的亮度可达1015w/cm2·sr,比太阳表面的亮度还高若干倍。

光纤通信用的半导体激光器的体积很小。和普通的晶体三极管差不多。它发出的光功率一般都不太大,通常只有几毫瓦。如果把它的能量高度集中,就很容易耦合进光纤。这对增加光纤通信的中继距离,提高通信质量是很有意义的。

激光器原理和常见激光器

一、             原子的能级

不同的原子具有不同的能级结构。一个原子中最低的能级称为基态,其余的称为高能态,或激发态。原子从高能态E2过渡到低能态E1时,会向外发射某个频率为ν的辐射,满足普朗克公式:hv = E1 - E2

式中h为普朗克常数。反之,该原子吸收频率为ν的辐射时,就会从低能态E1过渡到高能态E2

二、             光的受激吸收、自发辐射、受激辐射。

爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。文章提出了激光辐射理论,而这正是激光理论的核心基础。因此爱因斯坦被认为是激光理论之父。受激吸收就是处于低能态的原子吸收外界辐射而跃迁到高能态;自发辐射是指高能态的原子自发地辐射出光子并迁移至低能态。这种辐射的特点是每一个原子的跃迁是自发的、独立进行的,其过程全无外界的影响,彼此之间也没有关系。因此它们发出的光子的状态是各不相同的。这样的光相干性差,方向散乱。受激辐射——处于高能级的原子在光子的刺激或者感应下,跃迁到低能级,并辐射出一个和入射光子同样频率的光子过程。通过一次受激辐射,一个光子变为两个相同的光子。这意味着光被加强了,或者说光被放大了。这正是产生激光的基本过程。爱因斯坦的理论在当初只是为了解决黑体辐射问题而提出的假设。但是几十年后却成了打开激光宝库的金钥匙。

三、             粒子数反转。

在一个原子体系中,在光和原子体系的相互作用中,自发辐射、受激辐射和受激吸收总是同时存在的。是否能得到光的放大就取决于高、低能级的原子数量之比。若位于高能级的原子远远多于位于低能级的原子,我们就得到被高度放大的光。在通常热平衡的原子体系中,原子数目按能级的分布服从玻尔兹曼分布率。即Ni=Ne-(Ei/kT)因此,位于高能级的原子数总是少于低能级的原子数。为了得到光的放大,必须到非热平衡的体系中去寻找。所谓非热平衡体系,是指热运动并没有达到平衡、整个体系不存在一个恒定温度的原子体系。这种体系位于高能级上的原子数目有可能大于位于低能级上的原子数目。这种状态称为粒子数反转如何才能达到粒子数反转状态呢?这需要利用激活媒质。所谓激活媒质(也称为放大媒质或放大介质),就是可以使某两个能级间呈现粒子数反转的物质。它可以是气体,也可以是固体或液体。

四、             激光器的基本结构

有三个基本组成部分:

1、工作物质。即激光材料。用二能级的系统来做激活媒质实现粒子数反转是不可能的。要想获得粒子数反转,必须使用多能级系统。一般的,电子被激发到高能级后,在高能级上停留的时间是短暂的。而有些物质的电子处于第二能级E2的时间较长,仅次于基态能级E1。这个能级就叫做亚稳能级。选择适当的物质,使其在亚能级上的电子比低能级上的电子还多,即形成粒子数反转,使受激发射多于吸收。在现代的激光器中,第一台激光器红宝石激光器是三能级系统,也有一些激光器采用了四能级系统,如钕玻璃激光器。

2、谐振腔——用于实现光的放大反馈的仪器。它是放置在工作物质两端严格平行的两块反射镜组成的光学系统。激光器中开始产生的光子是自发辐射产生的,其频率和方向杂乱无章。要使频率单纯,方向集中,就必须有一个谐振腔。

晶体和谐振腔都会使光子产生损耗。只有使光子在腔中振荡一次产生的光子数比损耗掉的光子多得多时,才能有放大作用。

3、激活源:有三种。①使用高强度的光,如高压氪灯、氙灯激光束。②从带电源来的电子,如电子束、化学反应能。③核辐射。这种方法较少用。

五、             常用激光器

从激活媒质的物质状态面分类,可分为气体、液体、固体和半导体激光器。

1   固体激光器能量高,输出功率大,但工作物质种类较少,而且单色性差。红宝石激光器(应用最广)、掺铷的钇铝石榴激光器(YAG激光器)、铷玻璃激光器等。

2   气体激光器,单色性强,如氦氖激光器的单色性比普通光源要高1亿倍,而且气体激光器工作物质种类繁多,如氮分子激光器、氩离子激光器等。因此可产生许多不同频率的激光。但是,由于气体密度低,激光输出功率相应较小。

3   液体激光器,最大特点是激光的波长可以在一定范围内连续变换。这种激光器特别适合于对激光波长有着严格要求的场合。应用较多的是染料激光器。

4   半导体激光器,特点是体积小,重量轻,结构简单,但输出的功率较小,单色性也较差。如砷化镓、铝镓砷、碲化锌激光器。

按激活媒质的粒子结构来分类,可以分为原子、离子、分子和自由电子激光器。——氖激光器产生的激光是由氖原子发射的,红宝石激光器产生的激光则是由铬离子发射的。另外还有二氧化碳分子激光器,它的频率可以连续变化。而且可以覆盖很宽的频率范围。

在光纤通信中,所用的光源有三种:半导体激光器、半导体发光二极管和非半导体激光器。在实际的光纤通信系统中,通常选用前两种。而非半导体激光器,如气体激光器、固体激光器等,虽然它们是最早制成的相干光源,但由于其体积太大,不适宜与体积小的光纤配合使用。

半导体激光器即为激光二极管,记作LD。它是前苏联科学家H.Γ.巴索夫于1960年发明的。半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成。

半导体激光器的优点:尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。

半导体发光二极管和半导体激光器类似,也是一个PN结,也是利用外电源向PN结注入电子来发光的。半导体发光二极管记作LED,是由P型半导体形成的P层和N型半导体形成的N层,以及中间的由双异质结构成的有源层组成。有源层是发光区,其厚度为0.10.2μm左右。

半导体发光二极管的结构公差没有激光器那么严格,而且无谐振腔。所以,所发出的光不是激光,而是荧光。半导体发光二极管的结构简单,体积小,工作电流小,使用方便,成本低,所以在光电系统中的应用极为普遍。

激光的应用及其发展

激光是20世纪60年代的新光源。由于激光具有方向性好、亮度高、单色性好、相干性好等特点而得到广泛应用。目前,激光器的种类繁多,名称各异,有体积整整占据一幢大楼、功率为上万亿瓦、用于引发核聚变的激光器,也有比人的指甲还小、输出功率仅有几毫瓦、用于光电通信的半导体激光器。

一、             激光在基础科学研究上的应用

1                  非线性光学:其研究对象是在强光作用下物质的响应与场强呈现的非线性关系。非线性光学元件已用于光信号的开关和控制。激光为其研究创造了条件。

2                  激光光谱:用激光作光谱分析,解决了传统光谱学悬而未决的一系列问题。如高频率分辩、高时间分辨、超快速过程光谱等。激光光谱的特点是:利于弱光谱信号的探测,有高度的空间分辨率和能量聚集,可进行远距离光谱分析,有助于驰豫过程、能量转移过程和化学反应等方面的研究。用激光光谱仪对检测物质进行样品分析,其灵敏度可达10-16,一般有一微克样品就可进行分析。

3                  激光核聚变:激光在核能应用上也将大显身手。乐观的专家们估计,到2020年强大的激光会产生安全经济的热核聚变,这类似恒星内部的核反应过程。如果实现,热核聚变将带来巨大无比的社会和经济效益,能源危机亦将不复存在。到那时,一桶水中的氢聚变后所产生的电力足够一个城市使用。

4                  激光生物技术:激光被用来研究与生命密切相关的光合作用、血红蛋白、DNA等的机制。用激光照射动物细胞可以使基因发生突变;用激光对机体极微量元素进行测定,可以跟踪并研究快速的生物化学反应过程;用激光照射动物的精子和卵,可以加强精子的活动能力。

5                  激光化学技术:用激光控制化学反应。由量子力学原理知,物质的基本粒子都具有波动性。而一切波都有粒子性。由于激光能产生各种不同频率的光子,当光子的能量和物质分子的键能相等时,若用该激光照射物质分子,就能使原子(或分子)被激活,促使它们迅速分解或化合,产生新的物质结构。激光可以使化学反应加快,又可以控制化学反应的方向,甚至可以使原来在加热、加压或加催化剂的条件下不易发生的化学反应迅速发生。利用激光进行同位素分离,已取得成果。1984年在发现C60时,就采用了激光技术。

二、             激光在工业上的应用

1                  打孔:激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度最大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。激光打标技术是激光加工最大的应用领域之一。激光打标是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标方法。激光打标可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。准分子激光打标是近年来发展起来的一项新技术,特别适用于金属打标,可实现亚微米打标,已广泛用于微电子工业和生物工程。

2                  切割:激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。现代的激光成了人们所幻想追求的削铁如泥宝剑

3                  焊接:激光焊接技术具有溶池净化效应,能纯净焊缝金属,适用于相同和不同金属材料间的焊接。激光焊接能量密度高,对高熔点、高反射率、高导热率和物理特性相差很大的金属焊接特别有利。激光焊接,用比切割金属时功率较小的激光束,使材料熔化而不使其气化,在冷却后成为一块连续的固体结构。激光在工业领域中的应用是有局限和缺点的,比如用激光来切割食物和胶合板就不成功,食物被切开的同时也被灼烧了,而切割胶合板在经济上还远不合算。

4                  热处理:激光相变硬化技术、激光退火技术、激光冲击硬化技术、这些技术对改变材料的机械性能、耐热性和耐腐蚀性等有重要作用。激光相变硬化(即激光淬火)是激光热处理中研究最早、最多、进展最快、应用最广的一种新工艺, 适用于大多数材料和不同形状零件的不同部位,可提高零件的耐磨性和疲劳强度,国外一些工业部门将该技术作为保证产品质量的手段。激光退火技术是半导体加工的一种新工艺,效果比常规热退火好得多。激光退火后, 杂质的替位率可达到98%99%, 可使多晶硅的电阻率降到普通加热退火的1/21/3, 还可大大提高集成电路的集成度, 使电路元件间的间隔缩小到0.5微米。激光冲击硬化技术能改善金属材料的机械性能, 可阻止裂纹的产生和扩展, 提高钢、铝、钛等合金的强度和硬度, 改善其抗疲劳性能。

5                  激光熔覆表面:激光包覆技术是在工业中获得广泛应用的激光表面改性技术之一, 具有很好的经济性,可大大提高产品的抗腐蚀性。激光表面合金化技术是材料表面局部改性处理的新方法, 是未来应用潜力最大的表面改性技术之一,适用于航空、航天、兵器、核工业、 汽车制造业中需要改善耐磨、耐腐蚀、耐高温等性能的零件。激光强化电镀技术可提高金属的沉积速度, 速度比无激光照射快1000, 对微型开关、精密仪器零件、微电子器件和大规模集成电路的生产和修补具有重大意义。激光上釉技术对于材料改性很有发展前途, 其成本低, 容易控制和复制, 有利于发展新材料。激光上釉结合火焰喷涂、等离子喷涂、离子沉积等技术, 在控制组织、提高表面耐磨、耐腐蚀性能方面有着广阔的应用前景。电子材料、电磁材料和其它电气材料经激光上釉后用于测量仪表极为理想。

6                  激光清洗:激光清洗技术的采用可大大减少加工器件的微粒污染,提高精密器件的成品率。

其它:激光微调技术可对指定电阻进行自动精密微调,精度可达0.01%0.002%,比传统加工方法的精度和效率高、成本低。激光微调包括薄膜电阻(0.010.6微米厚)与厚膜电阻(2050微米厚)的微调、电容的微调和混合集成电路的微调。激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成果,根据零件的CAD模型,用激光束将光敏聚合材料逐层固化,精确堆积成样件,不需要模具和刀具即可快速精确地制造形状复杂的零件,该技术已在航空航天、电子、汽车等工业领域得到广泛应用。激光去重平衡技术是用激光去掉高速旋转部件上不平衡的过重部分,使惯性轴与旋转轴重合,以达到动平衡的过程。激光去重平衡技术具有测量和去重两大功能,可同时进行不平衡的测量和校正,效率大大提高,在陀螺制造领域有广阔的应用前景。对于高精度转子,激光动平衡可成倍提高平衡精度,其质量偏心值的平衡精度可达1%或千分之几微米。激光蚀刻技术比传统的化学蚀刻技术工艺简单、可大幅度降低生产成本,可加工0.1251微米宽的线,非常适合于超大规模集成电路的制造。激光划线技术是生产集成电路的关键技术,其划线细、精度高(线宽为1525微米,槽深为5200微米),加工速度快(可达200毫米/),成品率可达99.5%以上。激光在电子工业应用。可以用它来进行微型仪器的精密加工,可以对脆弱易碎的半导体材料进行精细的划片,也可以用来调整微型电阻的阻值。随着激光器性能的改善和新型激光器的出现,激光在超大规模集成电路方面的应用已经成为许多其他工艺所无法取代的关键性技艺,为超大规模集成电路的发展展现出令人鼓舞的前景。

7光在测量上的应用根据光学理论,某单色光的最大可测长度L与该单色光源波长λ及其谱线宽度Δλ之间的关系为L=λ/Δλ。激光Δλ小则L可很长。激光测距精度高,比如测量月地距离误差小于1米。激光测距仪是激光在军事上应用的起点。60年代的越南战争和中东战争首先将其应用到火炮系统,大大提高了火炮射击精度。激光还将成为时间和长度的新标准,以后任何高精度的钟表和米尺都可以用某一特定波长的激光束来标定。

三、             激光在信息工程中的应用

1                  全息照相:一般照相机照出的照片都是平面的,没有立体感。用物理术语来说,得到的仅是二维图像,很多信息都失去了。当激光出现后,人类才第一次得到了全息照片。所谓全息照片就是一种记录被摄物体反射(或透射)光波中全部信息的先进照相技术。全息照片不用一般的照相机,而要用一台激光器。激光束用分光镜一分为二,其中一束照到被拍摄的景物上,称为物光束;另一束直接照到感光胶片即全息干板上,称为参考光束。当光束被物体反射后,其反射光束也照射在胶片上,就完成了全息照相的摄制过程。全息照片和普通照片截然不同。用肉眼去看,全息照片上只有些乱七八糟的条纹。可是若用一束激光去照射该照片,眼前就会出现逼真的立体景物。更奇妙的是,从不同的角度去观察,就可以看到原来物体的不同侧面。而且,如果不小心把全息照片弄碎了,那也没有关系。随意拿起其中的一小块碎片,用同样的方法观察,原来的被摄物体仍然能完整无缺地显示出来。全息照相的原理是利用光的干涉原理,利用两束光的干涉来记录被摄物体的信息。

2            激光信息存储:激光存储技术是利用激光来记录视频、音频、文字资料及计算机信息的一种技术,是信息化时代的支撑技术之一。

3                  激光通信:光源是光纤通信系统的关键器件,它产生光通信系统所需要的光载波,其特性